EXAL

In algebra, Exalcomm is a functor classifying the extensions of a commutative algebra by a module. More precisely, the elements of Exalcommk(R,M) are isomorphism classes of commutative k-algebras E with a homomorphism onto the k-algebra R whose kernel is the R-module M (with all pairs of elements in M having product 0). Note that some authors use Exal as the same functor. There are similar functors Exal and Exan for non-commutative rings and algebras, and functors Exaltop, Exantop, and Exalcotop that take a topology into account. "Exalcomm" is an abbreviation for "COMMutative ALgebra EXtension" (or rather for the corresponding French phrase). It was introduced by Grothendieck & Dieudonné (1964, 18.4.2). Exalcomm is one of the André–Quillen cohomology groups and one of the Lichtenbaum–Schlessinger functors. Given homomorphisms of commutative rings A → B → C and a C-module L there is an exact sequence of A-modules (Grothendieck & Dieudonné 1964, 20.2.3.1) 0 → Der B ⁡ ( C , L ) → Der A ⁡ ( C , L ) → Der A ⁡ ( B , L ) → Exalcomm B ⁡ ( C , L ) → Exalcomm A ⁡ ( C , L ) → Exalcomm A ⁡ ( B , L ) {\displaystyle {\begin{aligned}0\rightarrow \;&\operatorname {Der} _{B}(C,L)\rightarrow \operatorname {Der} _{A}(C,L)\rightarrow \operatorname {Der} _{A}(B,L)\rightarrow \\&\operatorname {Exalcomm} _{B}(C,L)\rightarrow \operatorname {Exalcomm} _{A}(C,L)\rightarrow \operatorname {Exalcomm} _{A}(B,L)\end{aligned}}} where DerA(B,L) is the module of derivations of the A-algebra B with values in L. This sequence can be extended further to the right using André–Quillen cohomology.

GOLDENBOY - 2023-02-01T00:00:00.000000Z

Still Addicted - 2025-06-10T00:00:00.000000Z

OUNANA - 2025-03-28T00:00:00.000000Z

Gia Panta - 2025-02-14T00:00:00.000000Z

ADRENALINA - 2024-12-20T00:00:00.000000Z

Ma Bella - 2024-10-01T00:00:00.000000Z

KATI - 2024-08-01T00:00:00.000000Z

MIA FORA - 2024-06-13T00:00:00.000000Z

AMG - 2024-03-22T00:00:00.000000Z

BEEF - 2023-12-01T00:00:00.000000Z

Droga - 2023-10-02T00:00:00.000000Z

Tik Tok - 2023-07-03T00:00:00.000000Z

Shake - 2023-05-26T00:00:00.000000Z

Sorry - 2022-12-20T00:00:00.000000Z

MONEYBAG - 2021-11-08T00:00:00.000000Z

2 Cool 4 School - 2021-07-19T00:00:00.000000Z

No Face No Case - 2021-05-24T00:00:00.000000Z

Similar Artists

ARMA

vask

Lindo

Yung Nas

Young Shot

epimtx

JO

Mambaath

Babu 101

RIOS

Motes

LaKwste

Joko

AK 101

BandoleRo

Ross

Noro

EL PADRON

PAR1S

Big Kallashi